http://WWW.POWERPACKPUMPSETS.COM
POWERPACKBGR 5a71f48392961c0874055147 False 110 21
OK
background image not found
Products
https://productimages.withfloats.com/tile/5c9f262b3fa9e30001845df2.jpg
TEXMO AQUA 1 HP PRESSURE BOOSTER PUMP INR 22000 INR 22000
view details
5c9f262bf02a620001a11bf0
-0%

TEXMO AQUA 1 HP PRESSURE BOOSTER PUMP

booster pump is a machine which will increase the pressure of a fluid. They may be used with liquids or gases, but the construction details will vary depending on the fluid. A gas booster is similar to a gas compressor, but generally a simpler mechanism which often has only a single stage of compression, and is used to increase pressure of a gas already above ambient pressure. Two-stage boosters are also made. Boosters may be used for increasing gas pressure, transferring high pressure gas, charging gas cylinders and scavenging. Booster pumps are usually piston or plunger type compressors. A single-acting, single-stage booster is the simplest configuration, and comprises a cylinder, designed to withstand the operating pressures, with a piston which is driven back and forth inside the cylinder. The cylinder head is fitted with supply and discharge ports, to which the supply and discharge hoses or pipes are connected, with a non-return valve on each, constraining flow in one direction from supply to discharge. When the booster is inactive, and the piston is stationary, gas will flow from the inlet hose, through the inlet valve into the space between the cylinder head and the piston. If the pressure in the outlet hose is lower, it will then flow out and to whatever the outlet hose is connected to. This flow will stop when the pressure is equalized, taking valve opening pressures into account. Once the flow has stopped, the booster is started, and as the piston withdraws along the cylinder, increasing the volume between the cylinder head and the piston crown, the pressure in the cylinder will drop, and gas will flow in from the inlet port. On the return cycle, the piston moves toward the cylinder head, decreasing the volume of the space and compressing the gas until the pressure is sufficient to overcome the pressure in the outlet line and the opening pressure of the outlet valve. At that point, the gas will flow out of the cylinder via the outlet valve and port. There will always be some compressed gas remaining in the cylinder and cylinder head spaces at the top of the stroke. The gas in this "dead space" will expand during the next induction stroke, and only after it has dropped below the supply gas pressure, more supply gas will flow into the cylinder. The ratio of the volume of the cylinder space with the piston fully withdrawn, to the dead space, is the "compression ratio" of the booster, also termed "boost ratio" in this context. Efficiency of the booster is related to the compression ratio, and gas will only be transferred while the pressure ratio between supply and discharge gas is less than the boost ratio, and delivery rate will drop as the inlet to delivery pressure ratio increases. Delivery rate starts at very close to swept volume when there is no pressure difference, and drops steadily until there is no effective transfer when the pressure ratio reaches the maximum boost ratio. Compression of gas will cause a rise in temperature. The heat is mostly carried out by the compressed gas, but the booster components will also be heated by contact with the hot gas. Some boosters are cooled by water jackets or external fins to increase convectional cooling by the ambient air, but smaller models may have no special cooling facilities at all. Cooling arrangements will improve efficiency, but will cost more to manufacture. 1 YEAR WARRANTY

INR 0 INR 22000

Availability:True

Pay mode:COD only

view details
https://productimages.withfloats.com/tile/5c9f267c7316740001947800.jpg
SHARP 1 HP PRESSURE BOOSTER PUMP INR 17000 INR 17000
view details
5c9f25650ea6d7000148b876
-0%

SHARP 1 HP PRESSURE BOOSTER PUMP

Booster pump is a machine which will increase the pressure of a fluid. They may be used with liquids or gases, but the construction details will vary depending on the fluid. A gas booster is similar to a gas compressor, but generally a simpler mechanism which often has only a single stage of compression, and is used to increase pressure of a gas already above ambient pressure. Two-stage boosters are also made. Boosters may be used for increasing gas pressure, transferring high pressure gas, charging gas cylinders and scavenging. Booster pumps are usually piston or plunger type compressors. A single-acting, single-stage booster is the simplest configuration, and comprises a cylinder, designed to withstand the operating pressures, with a piston which is driven back and forth inside the cylinder. The cylinder head is fitted with supply and discharge ports, to which the supply and discharge hoses or pipes are connected, with a non-return valve on each, constraining flow in one direction from supply to discharge. When the booster is inactive, and the piston is stationary, gas will flow from the inlet hose, through the inlet valve into the space between the cylinder head and the piston. If the pressure in the outlet hose is lower, it will then flow out and to whatever the outlet hose is connected to. This flow will stop when the pressure is equalized, taking valve opening pressures into account. Once the flow has stopped, the booster is started, and as the piston withdraws along the cylinder, increasing the volume between the cylinder head and the piston crown, the pressure in the cylinder will drop, and gas will flow in from the inlet port. On the return cycle, the piston moves toward the cylinder head, decreasing the volume of the space and compressing the gas until the pressure is sufficient to overcome the pressure in the outlet line and the opening pressure of the outlet valve. At that point, the gas will flow out of the cylinder via the outlet valve and port. There will always be some compressed gas remaining in the cylinder and cylinder head spaces at the top of the stroke. The gas in this "dead space" will expand during the next induction stroke, and only after it has dropped below the supply gas pressure, more supply gas will flow into the cylinder. The ratio of the volume of the cylinder space with the piston fully withdrawn, to the dead space, is the "compression ratio" of the booster, also termed "boost ratio" in this context. Efficiency of the booster is related to the compression ratio, and gas will only be transferred while the pressure ratio between supply and discharge gas is less than the boost ratio, and delivery rate will drop as the inlet to delivery pressure ratio increases. Delivery rate starts at very close to swept volume when there is no pressure difference, and drops steadily until there is no effective transfer when the pressure ratio reaches the maximum boost ratio. Compression of gas will cause a rise in temperature. The heat is mostly carried out by the compressed gas, but the booster components will also be heated by contact with the hot gas. Some boosters are cooled by water jackets or external fins to increase convectional cooling by the ambient air, but smaller models may have no special cooling facilities at all. Cooling arrangements will improve efficiency, but will cost more to manufacture. 1 YEAR WARRANTY

INR 0 INR 17000

Availability:False

Pay mode:COD only

view details
https://productimages.withfloats.com/tile/5c9f242eb6f36c0001fb6786.jpg
CROMPTON 1HP PRESSURE BOOSTER PUMPSET INR 16500 INR 16500
view details
5c9f242eff146b0001e30c5b
-0%

CROMPTON 1HP PRESSURE BOOSTER PUMPSET

booster pump is a machine which will increase the pressure of a fluid. They may be used with liquids or gases, but the construction details will vary depending on the fluid. A gas booster is similar to a gas compressor, but generally a simpler mechanism which often has only a single stage of compression, and is used to increase pressure of a gas already above ambient pressure. Two-stage boosters are also made. Boosters may be used for increasing gas pressure, transferring high pressure gas, charging gas cylinders and scavenging. Booster pumps are usually piston or plunger type compressors. A single-acting, single-stage booster is the simplest configuration, and comprises a cylinder, designed to withstand the operating pressures, with a piston which is driven back and forth inside the cylinder. The cylinder head is fitted with supply and discharge ports, to which the supply and discharge hoses or pipes are connected, with a non-return valve on each, constraining flow in one direction from supply to discharge. When the booster is inactive, and the piston is stationary, gas will flow from the inlet hose, through the inlet valve into the space between the cylinder head and the piston. If the pressure in the outlet hose is lower, it will then flow out and to whatever the outlet hose is connected to. This flow will stop when the pressure is equalized, taking valve opening pressures into account. Once the flow has stopped, the booster is started, and as the piston withdraws along the cylinder, increasing the volume between the cylinder head and the piston crown, the pressure in the cylinder will drop, and gas will flow in from the inlet port. On the return cycle, the piston moves toward the cylinder head, decreasing the volume of the space and compressing the gas until the pressure is sufficient to overcome the pressure in the outlet line and the opening pressure of the outlet valve. At that point, the gas will flow out of the cylinder via the outlet valve and port. There will always be some compressed gas remaining in the cylinder and cylinder head spaces at the top of the stroke. The gas in this "dead space" will expand during the next induction stroke, and only after it has dropped below the supply gas pressure, more supply gas will flow into the cylinder. The ratio of the volume of the cylinder space with the piston fully withdrawn, to the dead space, is the "compression ratio" of the booster, also termed "boost ratio" in this context. Efficiency of the booster is related to the compression ratio, and gas will only be transferred while the pressure ratio between supply and discharge gas is less than the boost ratio, and delivery rate will drop as the inlet to delivery pressure ratio increases. Delivery rate starts at very close to swept volume when there is no pressure difference, and drops steadily until there is no effective transfer when the pressure ratio reaches the maximum boost ratio. Compression of gas will cause a rise in temperature. The heat is mostly carried out by the compressed gas, but the booster components will also be heated by contact with the hot gas. Some boosters are cooled by water jackets or external fins to increase convectional cooling by the ambient air, but smaller models may have no special cooling facilities at all. Cooling arrangements will improve efficiency, but will cost more to manufacture. WITH FLOAT 1 YEAR WARRANTY FROM MANUFACTURER

INR 0 INR 16500

Availability:True

Pay mode:COD only

view details
https://productimages.withfloats.com/tile/5c9f1a4f6fd8ce0001bab7fc.jpg
VARUNA 1 HP PRESSURE BOOSTER PUMPSET INR 15000 INR 15000
view details
5c9f1a4f63060a00018a73ce
-0%

VARUNA 1 HP PRESSURE BOOSTER PUMPSET

booster pump is a machine which will increase the pressure of a fluid. They may be used with liquids or gases, but the construction details will vary depending on the fluid. A gas booster is similar to a gas compressor, but generally a simpler mechanism which often has only a single stage of compression, and is used to increase pressure of a gas already above ambient pressure. Two-stage boosters are also made. Boosters may be used for increasing gas pressure, transferring high pressure gas, charging gas cylinders and scavenging. Booster pumps are usually piston or plunger type compressors. A single-acting, single-stage booster is the simplest configuration, and comprises a cylinder, designed to withstand the operating pressures, with a piston which is driven back and forth inside the cylinder. The cylinder head is fitted with supply and discharge ports, to which the supply and discharge hoses or pipes are connected, with a non-return valve on each, constraining flow in one direction from supply to discharge. When the booster is inactive, and the piston is stationary, gas will flow from the inlet hose, through the inlet valve into the space between the cylinder head and the piston. If the pressure in the outlet hose is lower, it will then flow out and to whatever the outlet hose is connected to. This flow will stop when the pressure is equalized, taking valve opening pressures into account. Once the flow has stopped, the booster is started, and as the piston withdraws along the cylinder, increasing the volume between the cylinder head and the piston crown, the pressure in the cylinder will drop, and gas will flow in from the inlet port. On the return cycle, the piston moves toward the cylinder head, decreasing the volume of the space and compressing the gas until the pressure is sufficient to overcome the pressure in the outlet line and the opening pressure of the outlet valve. At that point, the gas will flow out of the cylinder via the outlet valve and port. There will always be some compressed gas remaining in the cylinder and cylinder head spaces at the top of the stroke. The gas in this "dead space" will expand during the next induction stroke, and only after it has dropped below the supply gas pressure, more supply gas will flow into the cylinder. The ratio of the volume of the cylinder space with the piston fully withdrawn, to the dead space, is the "compression ratio" of the booster, also termed "boost ratio" in this context. Efficiency of the booster is related to the compression ratio, and gas will only be transferred while the pressure ratio between supply and discharge gas is less than the boost ratio, and delivery rate will drop as the inlet to delivery pressure ratio increases. Delivery rate starts at very close to swept volume when there is no pressure difference, and drops steadily until there is no effective transfer when the pressure ratio reaches the maximum boost ratio. Compression of gas will cause a rise in temperature. The heat is mostly carried out by the compressed gas, but the booster components will also be heated by contact with the hot gas. Some boosters are cooled by water jackets or external fins to increase convectional cooling by the ambient air, but smaller models may have no special cooling facilities at all. Cooling arrangements will improve efficiency, but will cost more to manufacture. 1 YEAR WARRANTY

INR 0 INR 15000

Availability:True

Pay mode:COD only

view details
https://productimages.withfloats.com/tile/5c9f19d8d5da2e0001bf0d67.jpg
MAHENDRA 1HP PRESSURE BOOSTER PUMPSET INR 18000 INR 18000
view details
5c9f19ac74408c000174907a
-0%

MAHENDRA 1HP PRESSURE BOOSTER PUMPSET

booster pump is a machine which will increase the pressure of a fluid. They may be used with liquids or gases, but the construction details will vary depending on the fluid. A gas booster is similar to a gas compressor, but generally a simpler mechanism which often has only a single stage of compression, and is used to increase pressure of a gas already above ambient pressure. Two-stage boosters are also made. Boosters may be used for increasing gas pressure, transferring high pressure gas, charging gas cylinders and scavenging. Booster pumps are usually piston or plunger type compressors. A single-acting, single-stage booster is the simplest configuration, and comprises a cylinder, designed to withstand the operating pressures, with a piston which is driven back and forth inside the cylinder. The cylinder head is fitted with supply and discharge ports, to which the supply and discharge hoses or pipes are connected, with a non-return valve on each, constraining flow in one direction from supply to discharge. When the booster is inactive, and the piston is stationary, gas will flow from the inlet hose, through the inlet valve into the space between the cylinder head and the piston. If the pressure in the outlet hose is lower, it will then flow out and to whatever the outlet hose is connected to. This flow will stop when the pressure is equalized, taking valve opening pressures into account. Once the flow has stopped, the booster is started, and as the piston withdraws along the cylinder, increasing the volume between the cylinder head and the piston crown, the pressure in the cylinder will drop, and gas will flow in from the inlet port. On the return cycle, the piston moves toward the cylinder head, decreasing the volume of the space and compressing the gas until the pressure is sufficient to overcome the pressure in the outlet line and the opening pressure of the outlet valve. At that point, the gas will flow out of the cylinder via the outlet valve and port. There will always be some compressed gas remaining in the cylinder and cylinder head spaces at the top of the stroke. The gas in this "dead space" will expand during the next induction stroke, and only after it has dropped below the supply gas pressure, more supply gas will flow into the cylinder. The ratio of the volume of the cylinder space with the piston fully withdrawn, to the dead space, is the "compression ratio" of the booster, also termed "boost ratio" in this context. Efficiency of the booster is related to the compression ratio, and gas will only be transferred while the pressure ratio between supply and discharge gas is less than the boost ratio, and delivery rate will drop as the inlet to delivery pressure ratio increases. Delivery rate starts at very close to swept volume when there is no pressure difference, and drops steadily until there is no effective transfer when the pressure ratio reaches the maximum boost ratio. Compression of gas will cause a rise in temperature. The heat is mostly carried out by the compressed gas, but the booster components will also be heated by contact with the hot gas. Some boosters are cooled by water jackets or external fins to increase convectional cooling by the ambient air, but smaller models may have no special cooling facilities at all. Cooling arrangements will improve efficiency, but will cost more to manufacture. 2 YEARS WARRANTY

INR 0 INR 18000

Availability:False

Pay mode:COD only

view details
https://productimages.withfloats.com/tile/5c98847b2628d3000104fbaa.jpg
TEXMO AQUA SUBMERSIBLE PUMPSET 1PH INR 18600 INR 18600
view details
5c98847b68f2780001f7ad0e
-0%

TEXMO AQUA SUBMERSIBLE PUMPSET 1PH

1 YEAR WARRANTY COPPER ROTOR ORIGINAL TEXMO ENSURE TEXMO LOGO IS PRINTED ON THE PUMPSET BEFORE BUYING BUY ONLY ORIGINAL TEXMO

INR 0 INR 18600

Availability:True

Pay mode:COD only

view details
https://productimages.withfloats.com/tile/5c987ead43d6f60001755e7d.jpg
EUREKA SUBMERSIBLE PUMP 10 HP 12 STAGE INR 39000 INR 39000
view details
5c987ead28faf10001b5ec13
-0%

EUREKA SUBMERSIBLE PUMP 10 HP 12 STAGE

BEST IN QUALITY AND DURABILITY EUREKA SUBMERSIBLE PUMPSET WORKS AT LOW VOLTAGE 1 YEAR WARRANTY ONLY COMPANY TO HAVE 750 MODELS ACROSS INDIA 1 STAGE WORKS UPTO 35 FEET 3 PIECE BODY OF MOTOR HEAVY DUTY

INR 0 INR 39000

Availability:True

Pay mode:COD only

view details
https://productimages.withfloats.com/tile/5c987d5328a89f0001c7efb7.jpg
WILO INLINE PRESSURE PUMPSET INR 5000 INR 5000
view details
5c987d5368f2780001f7ac89
-0%

WILO INLINE PRESSURE PUMPSET

used to pressurise water in shower suitable for one shower inline pressure booster pump 1 year warranty

INR 0 INR 5000

Availability:True

Pay mode:COD only

view details
https://productimages.withfloats.com/tile/5c987bf5f4308f0001f3412e.jpg
EUREKA O.5 HP V TYPE SLOW SPEED PUMPSET INR 7000 INR 7000
view details
5c987bf5497c1c000140f214
-0%

EUREKA O.5 HP V TYPE SLOW SPEED PUMPSET

used for pulling water from tap cauvery water purpose 1 year warranty cast iron body heavy duty best in quality made in coimbatore

INR 0 INR 7000

Availability:True

Pay mode:COD only

view details
1
false